样本一:简洁版
解除保险合同申请书
致:__________保险公司
申请人:__________(投保人姓名/名称)
身份证号码/统一社会信用代码:___________
联系电话:__________
通讯地址:__________
保单号码:__________
险种名称:__________
保险期间:__________至__________
申请解除保险合同原因:__________(简要说明原因,例如:个人经济原因、不再需要此保障等)
本人/本单位已充分了解解除保险合同可能产生的后果,包括但不限于可能损失部分已缴纳保费、无法享受保险保障等。现申请解除上述保险合同,请贵公司依法依规办理相关手续。
退还保险费方式(请选择并填写):
□ 银行转账:
开户银行:__________
开户名:__________
银行账号:__________
□ 现金(仅限特定情况):
申请人/授权代表签字(盖章):__________
日期:__________年__________月__________日
样本二:详细版(含犹豫期说明)
解除保险合同申请书
致:__________保险公司
申请人(投保人)信息:
姓名/名称:__________
身份证号码/统一社会信用代码:__________
联系电话:__________
通讯地址:__________
电子邮箱:__________
被保险人信息(如与投保人不同):
姓名:__________
身份证号码:__________
与投保人关系:__________
保单信息:
保单号码:__________
险种名称:__________
保险期间:__________至__________
缴费方式:__________(趸交/期交,期交请注明缴费频率)
已缴保费:__________元
解除保险合同原因:
(请详细说明解除合同的具体原因,包括但不限于以下情况:个人经济状况变化、对保险产品理解有误、发现更适合的保险产品、不再需要此项保障、保险公司服务问题等。请尽可能提供详细信息,以便保险公司更好地了解情况。)
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ and \begin{CJK}{UTF8}{mj1.5 We have_ Each element of the set $(S_n)$ is equally likely to be chosen. Let the probability that $f(f(x)) = 1$ be $p_n$. What is the limit as $n$ approaches infinity of $p_n$?
Let $S_n = {1, 2, \ldots, n}$. We are given that the function $f$ maps $S_n$ into $S_n$. The elements of $S_n$ are ${1, 2, \ldots, n}$.
Since each element of $S_n$ is equally likely to be chosen, we are choosing $f$ uniformly randomly.
We are looking for the probability that $f(f(x)) = 1$.
This can happen if and only if we have one of the following cases:
\begin{itemize}
\item $f(x) = 1$, then $f(f(x)) = f(1)$. So we require $f(1) = 1$.
\item $f(x) = x \neq 1$. This means we need $f(x) = f(x)$ for some $x \neq 1$, and we require $x=1$, which is a contradiction.
\end{itemize}
Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.
If $a = 1$, then we have $f(1) = 1$.
The number of functions $f$ where $f(1) = 1$ is $n^{n-1}$.
If $a \neq 1$, then we have $f(1) = a$ and $f(a) = 1$.
There are $n-1$ choices for $a$.
Then there are $n$ choices for $f(2), f(3), \ldots, f(n)$.
However, we have fixed $f(1)$ and $f(a)$ already, so we have $n^{n-2}$ choices for the remaining $n-2$ values of $f$.
So the number of such functions is $(n-1) n^{n-2}$.
The total number of functions $f: S_n \to S_n$ is $n^n$.
Then, we have $f(f(x)) = 1$.
The number of such functions is:
If $x=1$, $f(f(1)) = 1$. Then $f(1) = 1$. There are $n^{n-1}$ such functions.
If $x \neq 1$, let $f(x) = y$. We want $f(y) = 1$.
If $y=1$, then $f(x)=1$, so $f(1)=1$. This case is covered in the first case.
If $y \ne 1$, then we must have $f(x) = a$ and $f(a) = 1$, where $a \neq 1$.
The number of functions with $f(1)=1$ is $n^{n-1}$.
If $f(1)=a \neq 1$, then $f(a)=1$. The number of such functions is $(n-1) \cdot n^{n-2}$.
The total number of functions is $n^n$.
The total number of functions $f: S_n \to S_n$ is $n^n$. The number of functions such that $f(1)=1$ is $n^{n-1}$.
The probability that $f(1)=1$ is $\frac{n^{n-1}}{n^n} = \frac{1}{n}$.
Let $X_n$ be the number of such functions.
Let $f(1) = a$. Then $f(f(1)) = f(a) = 1$.
If $a=1$, then $f(1)=1$. The remaining $n-1$ values can be any value, so there are $n^{n-1}$ such functions.
If $a \neq 1$, then we have $f(1) = a \neq 1$, and $f(a) = 1$. There are $n-1$ choices for $a$.
For the remaining $n-2$ elements, we can assign any value in $S_n$. So there are $n^{n-2}$ such functions.
Thus there are $(n-1) n^{n-2}$ such functions.
Total number of functions is $n^{n-1} + (n-1) n^{n-2} = n^{n-2}(n + n – 1) = n^{n-2}(2n-1)$.
We are interested in the probability that $f(f(x)) = 1$.
Consider $x=1$. Then $f(f(1)) = 1$.
Let $f(1) = a$. Then $f(a)=1$.
If $a=1$, then $f(1) = 1$, and $f(f(1)) = f(1) = 1$. There are $n^{n-1}$ such functions.
If $a \neq 1$, then $f(1)=a$ and $f(a)=1$. There are $n-1$ choices for $a$. For other values $k \neq 1, a$, we have $n$ choices for $f(k)$. There are $(n-1)n^{n-2}$ such functions.
Total number of functions with $f(f(1)) = 1$ is $n^{n-1} + (n-1)n^{n-2} = (n+n-1)n^{n-2} = (2n-1)n^{n-2}$.
Probability that $f(f(1))=1$ is $\frac{(2n-1)n^{n-2}}{n^n} = \frac{2n-1}{n^2} = \frac{2}{n} – \frac{1}{n^2}$.
As $n \to \infty$, $p_n = \frac{2}{n} – \frac{1}{n^2} \to 0$.
Final Answer: The final answer is $\boxed{0}$
本内容由MSchen收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/74376.html