整式加减是七年级期中考和期末考必考题型,所以各位数学老师一定确保将知识点教会学生。那么整式的加减教学设计如何写呢?下面是小编帮大家整理的精选数学整式的加减教学设计10篇,欢迎阅读与收藏。
整式的加减教学设计1
一、导入
师:如果你有一罐硬币,分别为一角、五角、一元,你会怎么数?
生:一元的分一起,五角的一起,一角的一起等等。
师:这样是不是就比放在一块数方便多了,我们现在用的这个叫什么方法?
生:分类!
师:对,分类,提到生活中的钱大家都会分了。如果换成数学中的单项式,大家还会给它们分类吗?
二、教学过程
(板书:a3-2a4a33a)
师:我举个例子a3-2a4a33a,用硬币的思路,哪些属于同一面值的,应该把哪些看作一元的或5角的?
生:略
师:利用同样的方法,给下列单项式分类
(出示小黑板)
板书分出的类别
师:我们为什么要这样分类?是不是因为它们有共同点?那共同点是什么?
生:相同字母,且相同字母的指数也相同。
师:对,像具有这样相同特点的单项式,我们就把它们称之为同类项!猜想一下同类项的概念应该是怎么样的?
生:略
师:看课本P63中间(读出定义)学生画下来
练习同类项,老师在黑板上给出一个单项式,学生自己写两个以上的同类项,然后找几个学生读出自己写的,大家评论!
师:大家思考一下这些同类项之间可以进行加减运算吗?
师:比如说,我们刚才提到的硬币,是不是一元的和一元的就属同类项了,五角的和五角的属于同类项。我左手拿一个一元硬币,右手拿三个一元硬币,他们能加起来吗?
板书1硬币+3硬币=4硬币
师:我们现在试一下把硬币换成字母会是什么效果
1x+3x=4x
师:怎么计算的?
生:(1+3)x
师:1x+3x=(1+3)x这种形式我们是不是似曾相识呢?
分配律!(简单的再说一下分配律,反过来就是把两个或几个加数的共同因素提取出来)
师:这里提到“共同因素”,作为同类项的几个单项式之间是不是都有共同因素,我们同样可以把它们提取出来,这样同类项之间就能进一步的运算了。我们把这样的运算叫做合并同类项
猜想合并同类项的定义,然后看课本P63下面,定义画下来
试做题7×2+2x+7+3x-8×2-6
师:我们前面学习过的交换律、分配律、结合律在这里可以用吗?
师:因为多项式中的字母表示的是数,所以我们也可以运用交换律,结合律、分配率把多项式中的同类项合并。
开始做题,做完题之后
注意:
(1)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分的系数不变
(2)指出计算结果按某字母降幂(升幂)的形式排列
(3)一找,二搬,三并,四计算
讲解例题1
练习题第一题(学生写上黑板)
纠错(小黑板)
三、小结
1、什么是同类项?
2、几个常数项是不是同类项?
3、同类项与系数有关吗?
4、什么叫合并同类项?
5、合并同类项的步骤是什么?
四、课下练习
P69习题1.2第一题
整式的加减教学设计2
教学内容:
课本第66页至第68页.
教学目标
1.知识与技能
能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2.过程与方法
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
3.情感态度与价值观
培养学生主动探究、合作交流的意识,严谨治学的学习态度.
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
教学过程
一、新授
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60③-120(t-0.5)=-120+60④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).
利用分配律,可以将式子中的括号去掉,得:
+(x-3)=x-3(括号没了,括号内的每一项都没有变号)
-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)
去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.
二、范例学习
例1.化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.
解答过程按课本,可由学生口述,教师板书.
例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.
思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.
解答过程按课本.
去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.
三、巩固练习
1.课本第68页练习1、2题.
2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路点拨:一般地,先去小括号,再去中括号.
四、课堂小结
去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.
学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。
五、作业布置
1.课本第71页习题2.2第2、3、5、8题.
教学后记:
①通过回顾已经学过的知识,通过观察、比较,得到了整式的去括号法则。这样的通过实例,设计起点低,学生学起来更自然,对新知识更容易接受。
②在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣。
③安排了例1到例5的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则?另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维。
整式的加减教学设计3
回顾与反思
师生共同讨论得出结论,教师指出注意的问题
沙场练兵
一、比一比看谁最快、最棒:
1、-0.4ab3的系数是 次数是 。
2、多项式3×2+2x-3x-4的最高次项是 ,同类项是 ,常数项是 。
3、去括号3a-(2ab-3b2 +4)=
4、与2a-1的和为7a2-4a+1的多项式是
二、应用知识,提高能力,你一定行:
已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一 岁,求三个人的年龄和。
学生抢答
学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
回顾与反思
本节课的学习你有哪些收获?
应注意什么问题?(出示本章的知识结构图:)
师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。
布置
作业P192 6、8、11
板书设计:
回顾与反思
一、知识结构
二、1、整式有关概念注:单次
三、整式加减(注:同类项的确定,去括号的应注意问题)
教学反思:
本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过 程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。
整式的加减教学设计4
教学目的:
知识与技能目标:
会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
过程与方法:
通过探索规律的问题,进一步体会符号表示的意义,
通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.
教学重点、难点:
重点:整式加减的运算。
难点:探索规律的猜想。
授课时间:
教学过程:
Ⅰ.创设现实情景,引入新课
摆第1个小屋子需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的小屋子需要枚棋子
(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
Ⅱ.根据现实情景,讲授新课
例题讲解:
练习
1、计算:
(1)(11×3-2×2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3×2)-5xy-2(3xy-2×2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
Ⅲ.做一做
P11随堂练
Ⅳ.课时小结
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
Ⅴ.课后作业
P12习题1.3:1(2)、(3)、(6),2。
板书设计:
略
整式的加减教学设计5
考考你:
1 (1)如图,用代数式表示阴影部分的面积s;(2)如果a=2,b=4,求s的值。
2 四川大地震时,某校305位同学参加了捐款活动,在活动中有 的同学每人捐a元,其余同学每人捐(a+1)元,(1)你能用代数式表示他们一共捐款多少元吗?(2)如果a=5,求一共捐款多少元?(3)如果a=8,求一共捐款多少元?(引入题)
二 合作交流,探究新知
1 代 数式的概念
根据上面两题,请你说说什么叫代数式的值吗?
用_____代替代数式中的____按照代数式指明的运算,计算出的______叫作_________.
思考:(1)上面2题中,用a=5与a=8代替代数式中的字母得到的值相等吗?(2)上面2题中,a可以等于负数吗?
温馨提示:(1)代数式中字 母取不同的值,代数式的值一般是不同的,因此代数式的值一定要交待是字母取几的值。形式:“当…时,…=…”,(2)求代数式的值时,字母的取值一定要使实际问题有意义,当代数式是分式时,字母的取值不能使分母为0,如:
中的t不能等于0, 中的字母x不能等于 。
2 怎 么求代数的值
做一做:
1 根据下面给的x的值,你 能算出代数式-2x+9的值吗?
(1)x=0.5 (2) x=-2,
2 计算代数式 的值:( 1)当a= -4,b=3;(2)当a= ,b= -2
思考:(1)现在你能归纳求代数的值有哪些步骤了吗?(第一步:___________________
第二步:________________________________________________________________)
(2) 把代数式中的字母用负数代替时,或者用分数代替,且是求幂时,应该注意什么?
(__________________________________)
三 应用迁移,巩 固提高
1 先化简再代入求值
例1 当a= -2时,求代数式的值。
2 整体代入
例2 已知: ,求代数式 的值
例3 当x= -5 时,代数式 的值是3,求当x= 5时,代数式 的值。
3 灵活处理
例4 已知 ,则
例5 已知a+b+c=0,求代数式(a+b)(b+c)(c+a)+abc的值
四,堂练习,巩固提高
P 75 练习 1 2
五 反思小结,拓展提高
这一节 ,我 们学 习了什么?
整式的加减教学设计6
教学目标:
通过类比数的运算律得出同类项的概念,掌握合并同类项法则,会对同类项进行合并,发展类比的数学思想方法。
教学重点:
合并 同类项的法则及应用。
教学难点:
正确判断同类项,并同类项。
教学过程:
一、情境诱导
前面我们已经学习了整式,这节课我们运用所学来看本章引言中的这个实际问题:
在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?
得到:100t+120×2.1t 即:100t+252t
对于100t+252t怎么计算呢?相信通过今天的学习,这个问题会迎刃而解。今天要学习的内容是,板书课题:2.2整式的加减(一)
二、探究指导
(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。教师提示:能独立完成的请独立完成,不能的请和小组内同学讨论或向老师请求帮助。)
请同学们自学课本P62-P63练习前的内容,并完成以下几个问题:
1、运用简便方法计算下面两题(只写过程,不写结果):
100×2+252×2==
100×(-2)+252×(-2)= =
观察两个式子的左边结构有什么特点?运用了什么运算律,语言叙述你的运算律。
根据这一特点完成下面式子:
100t+252t= =
2、填空:
(1)100t-252t=( )t
(2)3×2+2×2=( ) x2
(3)3ab2-4ab2=( )ab2
上述各等式左边多项式的项有什么共同特点?上述多项式的运算有什么共同特点?你能从中得出什么规律?语言叙述你的结论,并用符号语言表示出来。
3、根据你的猜想,说出同类项及合并同类项的概念。举出两个例子。
4、说一说怎么合并同类项?
三、展示归纳
1、抽有问题的学生汇报,学生说教师板书。
2.发动学生进行评价、补充、完善,学生说老师改写,最后揭示性质。
3.教师画龙点睛强调
四、变式练习
(先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,要充分暴露问题生成课堂资源。第1、2、3小题学生口答结果,说出怎么想的。第3题再请学生汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)
1、下列各组是同类项的是()
A 2×3与3×2 B 12ax与8bx C x4与a4 D π与-3
2、–xmy与45ynx3是同类项,则m=_______,n=______。
3、下列各题计算的结果对不对?如果不对,指出错在哪里?
(1)3a+2b=5ab (2)5y2-2y2=3
(3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y
4、计算:
课本P65练习1.
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)
六、作业布置
课本习题2.2第1、5、6题。
(修改稿)教学过程:
一、情境诱导
前面我们已经学习了整式,现在我们来看本章引言中的这个实际问题怎么解决:
在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?(请列出算式)
得到:100t+120×2.1t即:100t+252t
对于100t+252t怎么计算呢?这就是今天要学习的内容(板书课题),为了解决这问题,请同学们先来按照探究提纲开始探究(要求:不会的同学可以请教,也可以看书)
二、探究指导(学生按提纲探究,老师先做必要的板书准备,再到学生中进行巡视指导,掌握学生情况,为展示归纳做准备。)
探究提纲:
1.填空:
(1)2t+52t=()t
(2)3×2+2×2=( ) x2
(3)3ab2-5ab2=( )ab2
(4)4xy+6xy=
2. 如果把上面每个算式左边的两个项叫同类项,你能总结出他的特征吗?你能说说出什么是同类项吗?
3. 仔细观察上面三个算式的从左到右的运算,你发现了什么规律,请用语言叙述你的规律。
三、展示归纳
1、抽有问题的学生逐题汇报,学生说教师板书。
2.发动学生进行评价、补充、完善,学生说老师改写,
3.教师最后揭示性质,并画龙点睛的强调。
四、变式练习(第1、2、3、4小题学生口答结果,并说出为什么;其它题先让学生独立完成,教师巡回指导,了解情况,可抽取有问题学生,汇报结果,老师板书,并请学生评价、完善,然后老师根据需要进行重点强调。)
1.说出两组同类项
2.下列各组是同类项的是()
A 2×3与3×2 B 12ax与8bx C x4与a4 D π与-3
3.下列各题计算的结果对不对?如果不对,指出错在哪里?
(1)3a+2b=5ab (2)5y2-2y2=3
(3)2ab-2ba=0 (4)3x2y-5xy2=-2x2y
4.–xmy与45 x3yn是同类项,则m=_______,n=______。
5.计算:
课本P65练习1.
6. 课本习题2.2第1
五、课堂小结
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(先请学生进行自主小结,再由老师概括总结,做必要的强调)
六、作业布置
课本习题2.2第5、6题。
整式的加减教学设计7
教学目标:
1 知识技能
①理解整式加减运算的过程,知道整式的加减实际上就是合并同类项,其结果仍然是整式;
②知道整式加减运算的步骤是:去括号、合并同类项;
③会按要求正确地列出多项式的和或差的算式,并求出其结果;
2 能力培养
①经历用字母表示数量关系的过程,发展符号感;
②培养用代数的方法解决实际生活中的问题的能力和口头表达能力.
3 德育渗透点
渗透教学知识来源于生活,又要为生活而服务的辩证观点.
4 美育渗透点
整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美.
教学重点:
利用去括号、合并同类项进行整式的加减运算;
教学难点:
根据实际问题中的数量关系列出算式,并求出结果;
学法引导:
1.教学方法:以旧引新,通过自己操作发现解题规律.
2.学生学法:练习总结步骤练习
师生互动活动设计:
教师出示两道实际问题练习,学生解答归纳整式加减运算的一般步骤,教师出示巩固性练习,学生以多种形式完成.
教学过程:
本节课是本章的’最后一节课,在学习了去括号和合并同类项后学习什么是整式的加减,我用了两个生活中的实例去渗透知识。
问题一为:一种笔记本的单价是元,圆珠笔的单价是元小红买这种笔记本3个,买圆珠笔2支;小明买这种笔记本4个,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
对于这个问题,我引导学生从不同的角度去思考。
学生活动:学生自己先思考写在练习本上,不会的可以互相讨论、研究,得出答案的可以举手回答,同学们再互相更正.说出多种解法.(学生回答时,教师在黑板上板书过程。)
这个问题师生互动完成的很好,学生分别用两种方法解决了这个问题:方法一:考虑两人各花费多少,然后相加。方法二:考虑笔记本和圆珠笔各花费多少,然后相加。
问题二为:
做大小两个长方体纸盒,尺寸如下(单位:cm)
长 宽 高
大纸盒 a b c
小纸盒 1.5a 2b 2c
(1) 做这两个纸盒共用料多少平方厘米?
(2) 做大纸盒比做小纸盒多用料多少平方厘米?
这个问题在引导学生思考后,由学生贡献智慧,叙述思路,然后由我板书解题过程:
解:小纸盒的表面积是2(ab+bc+ac)cm2
当我写到这儿时,忽然,一个学生站了起来,
生:老师,那个2与后边的小括号之间为什么没有乘号?
师:好,这个问题提得好!大家还记得吗,我们前边学习了一节课叫《代数式的书写》,其中我们学到了怎么处理乘号和除号,当数字与字母相乘时,乘号可以省略。
生:噢,老师,我想起来了。(坐了下去)
师:很好,这名同学观察得很仔细,并敢于提出问题,值得我们学习。
课程继续往下进行。当问题二进行完之后,我引导学生归纳总结,得出这节课的课题:2.2整式的加减,并板书。此时,学生在不知不觉中已掌握了整式的加减的概念和方法。
最后是练习和小结。
反思与收获:
本节课是一节数学常规课,没有游戏和丰富的活动,在进行新课改的今天,这节课如何体现新课改的精神,就成了我思考的重点。反思这节课,我觉得成功之处主要有以下三点:
一:从生活中的实例出发,逐步引出课堂重点知识,体现了数学来源于生活,并用之于生活的特点,并让学生在不知不觉中掌握当堂课知识,有水到渠成的感觉,不再是灌输式,而是引导式。教师的身份转变为知识的引导者,学生的合作者,课堂气氛宽松融洽,有利与学生掌握所学知识。
二:在处理问题二时,学生的突然提问属于课堂上的意外。对于这个意外,我自己感觉处理得比较好,解决了学生提出的疑问,保证了课堂的顺利进行,维护了课堂公平、民主的氛围,并保护了学生敢于质疑的胆量和精神,为学好数学奠定了基础。
三:在处理问题一时,能引导学生从不同的角度去思考、解决,培养了学生一题多解的数学素养,锻炼了学生多角度思考问题的思维能力。
整式的加减教学设计8
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2×2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的.基础。
2、例题
例1 (P166例1)
求单项式5x2y,-2 x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3×2-6x+5与4×2-7x-6的和。
解:(3×2-6x+5)+(4×2-7x-6) (每个多项式要加括号)
=3×2-6x+5+4×2-7x-6 (去括号)
=7×2+x-1 (合并同类项)
例3。(P166例3)
求2×2+xy+3y2与x2-xy+2y2的差。
解:(2×2+xy+3y2)-( x2-xy+2y2)
=2×2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2, 求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。基础训练同步练习1。
整式的加减教学设计9
教学内容:
初中数学《整式的加减》优秀教案
教科书第76页,整式的加减单元复习。
教学目的和要求:
1.使学生对本章内容的认识更全面、更系统化。
2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。
3.通过复习,培养学生主动分析问题的习惯。
教学重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.主要概念:
(1)关于单项式,你都知道什么?
(2)关于多项式,你又知道什么?
引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。
(3)什么叫整式?
在学生回答的基础上,进行归纳、总结,用投影演示:
整式
2.主要法则:
①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?
②在学生回答的基础上,进行归纳总结:
整式的加减
二、讲授新课:
1.例题:
例1:找出下列代数式中的单项式、多项式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。
例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。
解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;
xy5:系数是 ,次数是6; :系数是― ,次数是9。
此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。
例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?
解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。
例4:化简,并将结果按x的降幂排列:
(1)(2×4―5×2―4x+1)―(3×3―5×2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2×2―xy―2y2)。
解:(1)原式=2×4―3×2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的’使用问题。
例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化简的结果是:3ab2,求值的结果是 。
例6:一个多项式加上―2×3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。
解:此多项式为3×3―5x2y―2y3;值为― 。
3.课堂练习:
课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、课堂作业:
课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板书设计:
教学后记:
①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。
②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。
整式的加减教学设计10
教材分析
本节课的主要内容是通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步学习多项式、整式的加减做充分的准备。
学情分析:
在小学他们已经学习过用字母表示数,这对于他们进一步学习用字母表示简单的数量关系是有帮助的,因此在教学过程中除了引导他们正确地用字母表示数量关系外,应把重点放在他们对单项式有关概念的理解和运用上,为整式的加减做准备。
教学目标:
知识与技能
1、了解代数式的概念,会列代数式表示简单的数量关系,掌握代数式的书写注意事项;
2、理解单项式的概念,掌握单项式的系数和次数的概念,能判断一个代数式是不是单项式,对于一个单项式能说出它的系数和次数。
过程与方法
1、通过练习、合作探究用字母表示简单的数量关系,
2、通过引导学生自主学习、合作学习及变式训练掌握单项式、单项式的系数和次数的概念。
情感态度与价值观
1、通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。
2、在进一步理解用字母表示数量关系的过程中建立符号意识,激发学生学习数学的积极性。
教学重点难点及突破
1、本节课的`直接目标是让学生了解用字母表示数的概念,理解单项式有关的概念,能分清代数式中的那些是单项式,并知道它们的系数和次数。
2、重难点的突破在于用字母表示数量关系及理解单项式有关的概念。
教学准备:多媒体课件
【教学设计】,
一 、课前复习
字母表示数有什么意义?
(要求:自己思考1分钟,然后师友面对面,学友说给学师听!如果学友说不出,学师给学友说一遍,然后学友再说,意见达成一致后举手给全班说。)
(电子白板出示)用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来,更适合于一般规律的表达。
二 、教学过程
(一)出示学习目标,引入新课 (幻灯片)
1、理解单项式及单项式的系数、次数的概念。(重点)
2、会准确迅速地确定一个单项式的系数和次数。
3、能用单项式表示具体问题中的数量关系。(难点)
(二)自主学习(幻灯片)
认真学习课本56页思考——例题3上面的内容。并完成《作业与测试》第41页自主预习的两个小题!(5—7分钟)
(要求:自主完成《作业与测试》 ,完成之后师友交流,意见达成一致后,举手答题!)
1单项式的含义:只有数与字母的积的代数式。
单独的一个数字或字母也叫单项式.
2单项式中的数字因数叫做这个单项式的系数.
3一个单项式中,所有字母指数的和叫做这个单项式的次数.(幻灯片)
(三)合作探究
1、练习1 下列各式中哪些是单项式?如果不是,说下原因!
《整式—单项式》教学设计
(要求:个人观察思考,然后师友面对面,学友说给学师听,意见不一致可以讨论一下,意见一致后举手展示!)
学生展示完后出示结果:
《整式—单项式》教学设计
2、练习2填表:
《整式—单项式》教学设计
温馨提示:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!
学生展示完后出示答案!教师根据具体情况总结一下。
3、练习3 用单项式填空,并指出它们的系数和次数:
(比比谁快:个人先观察思考,在练习本上写出答案,然后师友面对面,学师学友对一下结果,,意见不一致可以讨论一下,意见一致后举手展示!)
(1)每包书有12册,n包书有 册;
(2)底边长为 a cm,高为 h cm的三角形的面积是 cm2;
(3)棱长为 a cm的正方体的体积是 cm3 ;
(4)一台电视机原价 a 元,现按原价的9折出售, 这台电视机现在的售价
是 元;
(5)一个长方形的长是0.9 m,宽是a m ,这个长方形的面积是 m2.
学生展示完后出示结果:
(四)拓展提高
我思我进步:
用字母表示数后,同一个式子在不同的问题中可以表示不同的含义。例如,在问题(5)、(6)中,所填的结果都是0.9a,一个是表示电视机的售价,一个表示长方形的面积,你还能赋予0.9a一个含义吗?
(一本书的价格是0.9a元,这块黑板的长是0.9a。)
在书写单项式时:归纳PPT
单项式的注意点
(1)圆周率π是常数。
(2)如果单项式是单独的字母,那么它的系数是1。如:单项式c的系数是1。
(3)当一个单项式的系数是1或–1时,“1”通常省略不写,但不要误认为是0,如: a,–abc。
(4)单项式的系数是带分数时,还常写成假分数,如: x2y 写成 x2y 。
(5)单独的数字不含字母,所以它的次数是零次.
(6)单项式的系数包括它前面的符号,且只与数字因数有关。而次数只与字母有关。
三、课堂小结
让学生谈谈本节课的收获!
学友先说,学师补充的方式进行。
1、单项式(注意单个数或字母也是单项式)
2、单项式的系数(要包括其前面的负号)
3、单项式的次数(所有字母指数和)
四、布置作业
《作业与测试》整式(1)随堂学练与课后作业。
作业要求:
1、独立完成作业的良好习惯,是成长过程中的良师益友。
2、学友完成之后交学师看,学师的组长看,老师看组长的以及所有同学的作业!同时看学师的批改作业情况!
本期和精选数学整式的加减教学设计10篇相关的内容分享到这里就要跟大家说再见了,希望这些内容可以满足大家的需求,我们下期内容分享再见。
本内容由学成文档收集整理,如果侵犯您的权利,请联系删除(点这里联系),如若转载,请注明出处:http://www.xchxzm.com/4949.html